HOSPITAL LAUNDRY AND C. DIFFICILE SPORE INACTIVATION

Kevin McLaren

The American Reusable Textile Association (ARTA)

Hosted by Dr. Lynne Sehulster

ARTA – The American Reusable Textile Association

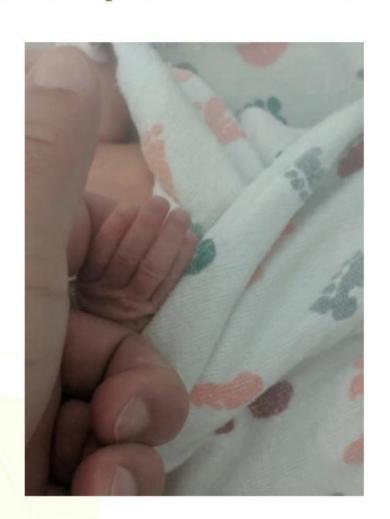
- Founded in 1982 to Promote the Use of Reusable Textiles
- Membership is comprised of all facets of the textile maintenance industry: Textile Manufacturers, Chemical Suppliers, Machine Manufacturers, Professional Launderers, other support organizations
- Mission Statement is to Promote the Value & Need for Reusable Textiles through Education, Research, Legislative & Regulatory Action
- Supports the 3-R's (reduce, reuse, recycle) to promote the 3-C's(comfort, cost, conservation)
- Life Cycle Assessment (LCAs) studies on environmental & cost of use of Reusables vs. Disposables

The ARTA C. diff Team

Brendan O'Neill -London Hospital Linen Service

Ed McCauley – **United Hospital Services**

Steve Tinker -Gurtler Industries


Kevin McLaren – Gurtler Industries

Nancy Jenkins -

Lynne Sehulster –

Environmental Infection Prevention, LLC

ARTA

Healthcare Laundry-A Wide Array of Textiles

- Bed Linens
- Bath Towels & Washcloths
- Patient Gowns
- Scrubs
- Isolation & Barrier Gowns
- Surgical Towels
- Housekeeping Wipers & Mops
- Warming Blankets
- Baby Blankets
- Other

The Historical Significance of Healthcare Laundry

1938 - A Sanitary Study of Commercial Laundry Practices.

American Journal of Public Health: Lloyd Arnold

Operation	Purpose	Temperature (oF)	Holding Time (minutes)	Ave. Bacterial Count per c.c. Wash Water	
Flush	Wet cloth	110	5	200,428	
Suds	Detergent-(soap-alkali)	125	10	94,314	
Suds	Detergent-(soap-alkali)	135	10	42,518	
Suds	Detergent-(soap-alkali)	140	10	8,382	
Suds	Detergent-(soap-alkali) plus 1% Bleach	165-170	15	5	
Rinse	Removes detergent	165	3	1	
Rinse	Removes detergent 165 3		3	0.5	
Rinse	Removes detergent	165	3	0.4	
Rinse	Removes detergent	165	3	0.2	
After Sour	Removes residue detergent	140	10	Sterile	
Blue		110			

The Historical Significance of Healthcare Laundry

1938 – A Sanitary Study of Commercial Laundry Practices.

American Journal of Public Health; Lloyd Arnold

- "The whole procedure consists of 4 detergency operations for cleaning the clothes and a similar number of rinsing operations to remove the detergent."
- "We were concerned only with the bacterial counts of the wash waters and the textiles in the laundry process."
- "A temperature of 165° to 175° F. with a chlorine (bleach) concentration of 0.01 per cent in the fourth suds, held for 15 minutes is an effective germicidal process."
- "Table IV gives the average number of bacteria cultured from wooden cylinders per sq. in. of surface before and after cleaning..."
- "It is apparent that the sanitary efficiency of the process is not satisfactory when the cylinder acts as a bacterial reservoir during the procedure.

The Historical Significance of Healthcare Laundry

<u>Published Studies and Their Role in our Beliefs</u>

Often cited references specific to laundering

- Bacteriological Quality of Fabrics Washed at Lower-Than-Standard
 Temperatures in Hospital Laundry Facilities. Christian, Manchester & Mellor
 1983
- Bacterial Survival in Laundered Fabrics. Walter & Schillinger 1974
- Detergent Systems on Bacterial Survival on Laundered Fabrics. Jaska & Fredell 1980
- Killing of Fabric-Associated Bacteria in Hospital Laundry by Low-Temperature Washing. Blaser, Smith, Cody, Wang, LaForce 1984
- Critical Analysis of the Microflora of Toweling. Wetzler, Quan, Schatzle 1971
- Antimicrobial disinfection effect of a laundering procedure for hospital textiles against various indicator bacteria and fungi using different substrates for simulating human excrements. Fijan, Koren, Cencic, Sostar-Turk.
- Bacterial Contamination of Surgical Scrubs and Laundering
 Mechanisms: Infection Control Implications. Twomey, Beitz, Johnson. 2009

The Historical Significance of Healthcare Laundry

Authors	Publication Year	Washer Type	Bleach (if noted)
Wetzler et. al.	1971	W/E	Chlorine
Walter & Schillinger	1975	W/E - 35 lb	Chlorine
Jaska & Fredell	1980	W/E - 25 lb	N/A
Christian et. al.	1983	W/E 350 lb	Chlorine
Blaser et. al	1984	W/E 400 lb	Chlorine
Perenich & Wilkinson	1993	Home-Stlye	N/A
KAM	1994	W/E	Chlorine
Twomey et. al	2009	Home Style	ND

The Historical Significance of Healthcare Laundry

What About Microbiological Studies Conducted in Modern Tunnel Washer Programs?

There is not much out there!

The Historical Significance of Healthcare Laundry

The Regulatory Guidance of Healthcare Laundry

- Guidelines for Environmental Infection Control in Health-Care Facilities – Section G. Laundry and Bedding. Centers for Disease Control & Prevention (approx. 80 citation references)
- Interpretive Guidelines for Long-Term Care Facilities F tag 441 Infection Control. Centers for Medicare & Medicaid Services (CMS)
- Department of Public Health. Multiple Individual States
- Guidelines for Surgical Scrubs or other Surgical/Procedural Attire. Joint Commission

"Today's Healthcare Laundry"

- Highly Automated Production Environment; Sling Rail systems for soil sort
- Tunnel washers replacing washer/extractors
- Automated shuttle systems move textiles through drying/finishing
- Ironers, folders, stackers automate finishing operations
- Evolution of "green" wash chemistry/programs
- On Premise Laundries (OPL) being replaced by Co-Op Laundries
- Consolidation of Healthcare providers and shrinking profits,
 Hospital closings
- Evolution & variation in textiles being laundered
- Chlorhexidine Gluconate has become primary antiseptic

13

"Today's Healthcare Laundry"

Why is "Today" different?

- Tunnel washers continue to replace washer/extractors as the machine of choice
- Tunnel washers retain water liquors and seldom run out "dry"
- Chlorine bleach use has diminished as the oxidizer of choice due to CHG
- Economic pressures have squeezed the use of wash chemistry
- Resource conservation efforts have introduced water recycle programs and reduced temperature
- Biodegradable surfactants have replaced more traditional NPE detergents

The Start of a Research Project

ARTA 2016 Educational Conference

Presentation on Clostridium difficile (now Clostridioides)

Pathogenicity

Impact on the Hospital & Healthcare Industry

Lack of published science specific to the role of the laundering process on C. diff spores

(lots on vegetative microbes)

Lack of EPA Germicide Testing Protocols for Laundry specific to bacterial spores

The Start of a Research Project

ARTA 2016 Educational Conference

http://www.thescientist.com/images/PDF/Anatomy-of-C.-Difficile.pdf

This is an easy to understand distillation of *Clostridium* difficile infection.

The Start of a Research Project

Developing a Study Objective / Goal:

- Work with the actual C. diff spores, not an indicator organism
- Identification of a Laboratory proficient in work with C. diff spores
- The lab needs to be proficient in microbiology & have ability to run "laundry" testing
- The lab needs to be proficient in anaerobic microbiology
- The lab needs to be agreeable to a customized testing protocol

The Start of a Research Project

Selecting – Developing Test Methods

ASTM, AOAC, AATCC, other

Focus on the Tunnel Washer laundry model

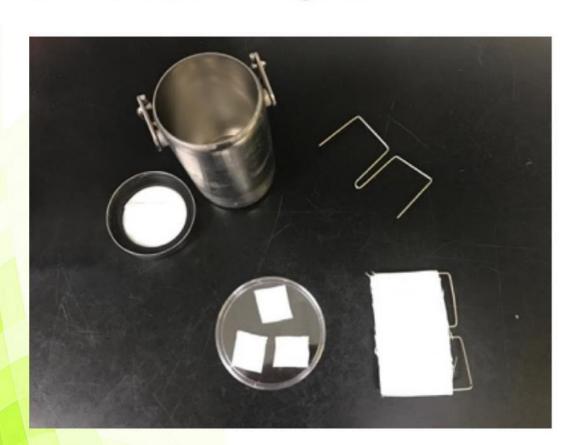
Tunnel Washers are the predominant washer style in the Healthcare Laundry market

Transfer rate will dictate exposure time

Conduct a feasibility test to prove that C. diff spores can be recovered from a cloth swatch

The Research Project

Select ASTM E 2406 "Evaluation of Laundry Sanitizers & Disinfectants" as a base protocol


Goal is to evaluate the alkaline Break and five (5) different bleaching conditions

All durations/exposures to be 8 minutes (very conservative, 2 x 4 minute "modules")

Agree to use 100% cotton test cloth based on history of this cloth, in this method, and data submission to the EPA

Test for C. diff spore survivors in both cloth & working solution

The Research Project

The Research Project: Test Conditions

- Chemical solutions for evaluation: (all solutions made in potable softened water)
 - 3 mls/liter Liquid sodium hydroxide builder + 2 mls/liter liquid nonionic surfactant blend (to be provided by study company) (approx. 800 ppm Na₂O)
 - 5 mls/liter sodium hypochlorite bleach 10% solution (500 ppm active)
 - 2 mls/liter sodium hypochlorite bleach 10% solution (200 ppm active)
 - 2 mls/liter hydrogen peroxide 32% bleach solution, adjusted to pH 11 w 1 N NaOH (approx 640 ppm)
 - 2 mls/liter peracetic acid (15/10/30 PAA/H₂O₂/Acid) bleach solution
 - 2 mls/liter peracetic acid (15/10/30 PAA/H₂O₂/Acid) bleach solution adjusted to pH 9 with 1 N NaOH
 - Potable water control

The Research Project: Target Test Conditions

Solution	Solution Description	pH of	Operational test	Time of	
		Solution	temperature	Exposure	
Α	Alkaline Detergent	11.0-12.0	160 °F	8 minutes	
В	500 ppm Chlorine Bleach	10.0-10.5	150 °F	8 minutes	
С	200 ppm Chlorine Bleach	10.0-10.5	150 °F	8 minutes	
D	640 ppm Hydrogen Peroxide	11.0-12.0	170 °F	8 minutes	
Е	2000 ppm PAA soln-acidic	As made	140 °F	8 minutes	
F	2000 pp. PAA soln- pH adjusted	9.0 + /- 0.25	140 °F	8 minutes	
G	Potable water control	7.0 +/- 1.0	100°F	8 minutes	

The Research Results:

	Test Substances	% C diff Spore Reduction: Cloth	% C diff Spore Reduction: Wash Solution
Α	Alkaline Detergent	No Reduction	No Reduction
В	500 ppm Chlorine Bleach	>99.9%	>99.9%
С	200 ppm Chlorine Bleach	>99.9%	>99.9%
D	640 ppm Hydrogen Peroxide- Alkaline	No Reduction	No Reduction
Е	300 ppm Peracetic acid - Acidic	No Reduction	48.7 %
F	300 ppm Peracetic acid - Alkaline	No Reduction	No Reduction


The Research Results Analysis:

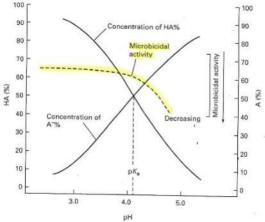
- A simulated alkaline detergent wash step did not kill spores
- Simulated chlorine bleach baths, both 200 & 500 ppm, kills spores
- A simulated alkaline peroxide bleach bath did not kill spores
- A simulated alkaline peracetic acid bleach bath did not kill spores
- An acidic solution of dilute peracetic acid showed some potential to kill spores dislodged from the cloth, though spore remaining in the cloth were unaffected

So does this mean my laundry process kills C. diff?

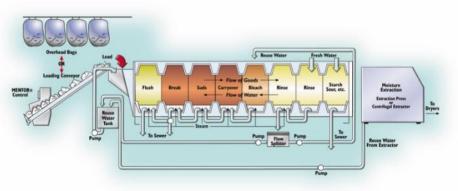
- If your laundry process is using chlorine bleach, you are probably killing C. diff spores
- If your laundry is using hydrogen peroxide bleach, you may not be killing C. diff spores
- If your laundry is using peracetic acid bleach, you may not be killing C. diff spores
- If your laundry processes colored textiles, without an oxidizing bleach, you may not be killing C. diff spores

But we only tested steps, right?

We didn't actually test a full simulated wash process, did we?


ARTA's C. Diff Research Continues: Study 2

- In the absence of an approved EPA Test Method: Study 1 has shown that C. diff spores can be recovered from a cloth carrier similar to vegetative bacteria
- Study 1 has also shown that chlorine bleach based laundry baths can kill C. diff spores in 8 minutes under "normal" operational conditions
- Study 1 suggests that it might be possible to kill C. diff spores with peracetic acid



ARTA's C. Diff Research Continues: Study 2

- A second study was designed to evaluate a simulated tunnel washer process
- This study was designed to mimic a 24 minute wash cycle
- This study was designed to incorporate a second/different grade of peracetic acid as the bleaching agent
- This study was intentionally designed to evaluate the PAA Bleach bath under a pH profile which is known to be more biocidal, pH 7
- This study was designed with as sequential transfer of the spindle wound cloth carriers through 5 test solutions.

ARTA's C. Diff Research Continues: Study 2

Pictorial of a Milnor brand traditional counter-flow tunnel washer. Courtesy of Pellerin Milnor Corporation

Pictorial of simulated wash sequence, transfer of C. diff spore inoculated cloth carriers through laundry wash baths.

Canister	A	В	С	D	E	Spore recovery
Solution	1 ml/l alkali	3 ml/l alkali + 2 ml/l detergent	2 ml/l Peracetic acid – 15% (300 ppm PAA)		0.2 ml/l acid "sour" TBD	
Time/Temp/pH	115 °F/3 min/ 10 pH (approx)	160 °F/ 6 min 11 pH	160 °F/ 6 min	115 °F/6 min pH TBD	115 °F/3 min 5-7 pH	
Theoretical Wash Cycle Time & Zone	3 minutes- Flush	9 minutes- Wash	15 minutes- Bleach	21 minutes- Rinse	24 minutes- Sour	

ARTA's C. Diff Research Continues: Study 2

- Prior to conducting this study, a feasibility test was performed to predict compliance to time and temperature targets
- Prior to conducting this study, a simulated "walk-through" was conducted to predict the pH profile of the bleaching canister.
- A gentle tweezer "ringing" of the fabric wound spindle was conducted between canisters 2 & 3 in order to minimize carryover of alkali
- This study also utilized a variation of the peracetic acid bleach composition containing 15/22/16 peracetic acid/hydrogen peroxide/acetic acid
- A mechanical action was also imparted via the inclusion of 5 stainless steel balls as per AATCC Laundrometer test methods

ARTA's C. Diff Research Continues: Study 2

Cloth Carrier Results:

	Blank (Control C	arriers	Test Carriers			
	#1	#2	#3	#1	#2	#3	
cfu/carrier	2.14 * 10 ⁵	1.41 * 10 ⁵	1.79 * 10 ⁵	<1 * 10 ¹	<1 * 10 ¹	<1 * 10 ¹	
cfu/carrier (ave.)		1.78 * 10 ⁵		<1 * 10¹			
% Reduction vs. Population Control	No Reduction			>99.9%			

ARTA's C. Diff Research Continues: Study 2

Test Solution Results:

	Blank Canisters				Test Canisters					
	#1 3 min	#2 6 min	#3 6 min	#4 6 min	#5 3 min	#1 3 min (alkali)	#2 6 min (alk & det)	#3 6 min (PAA)	#4 6 min (rinse)	#5 3 min (sour)
cfu/ml (wash water)	1.3*104	1.0*103	7.1*10²	5.9*10²	5.5*10 ²	1.7*104	4.8*103	<2.0*101	<2.0*101	<2.0*10
% Reduction vs. Population Control	45.6%	95.8%	97.0%	97.5%	97.7%	28.9%	79.9%	>99.9%	>99.9%	>99.9%

ARTA's C. Diff Research Continues: Study 2 *Results*

- At the conclusion of the simulated wash process, there were no detected C. diff spores in the cloth carriers
- At the conclusion of the simulated wash process, there were no detected C. diff spores in the final wash waters
- At the conclusion of the Blank Control, there were
 C. diff spores recovered from the cloth carriers
- 4. At the conclusion of the Blank Control, there were C. diff spores recovered from the final wash waters

ARTA's C. Diff Research Continues: Integrity & Validity of this Work

- These studies were conducted by an EPA and FDA Regulated Testing Laboratory
- These studies included all pertinent Spore Suspension Controls, Numbers Controls, Neutralization Controls and Temperature, Time & Blank Controls
- The testing was not conducted under GLP conditions due to infancy of this research
- ARTA's Out of Pocket expenditures approximate \$29,000.00

Path Forward

- A Research Manuscript detailing this study has been published. (AJIC – November 2019)
- There is need for additional research as it relates to other fabric types.
- There is need for additional research on the pH Temperature – Time lethality of peracetic acid laundry bleach baths.
- Validation of the use of existing EPA protocols for work with bacterial spores.
- Funding for additional research requires additional stakeholders.

Path Forward

- Future work needs to be mindful of potential corrosion to equipment
- Spore removal & kill under conditions of "cold water" washing should be studied to complement prior work on vegetative bacteria.
- This type of research has a direct patient touch

Questions?

Contact Information:

Kevin McLaren
Gurtler Industries, Inc.

kmclaren@gurtler.com

708-331-2550

www.webbertraining.com/schedulep1.php

LOOK AT WHAT THE CAT SCRATCHED IN - PET ASSOCIATED ZOONOSES. WHAT'S NEW AND RELEVANT FOR INFECTION PREVENTION AND CONTROL September 10, 2020

Speaker: Prof. Jason Stull, University of Prince Edward Island, and Ohio State

REPROCESSING OF CRITICAL FOOT CARE DEVICES

September 17, 2020 Speaker: Clare Barry, Infection Control Consultant, Canada, and Merlee Steele-

September 24, 2020 Speaker: Prof. Syed A Sattar, Professor Emeritus of Microbiology, University of

THE VALUE OF CERTIFICATION - "WHAT'S IN IT FOR ME?

Speaker: Sandra Callery, Certification Board of Infection Control

Speaker: Prof. Didier Pittet, World Health Organization, Geneva

Rodway, Canadian Association of Medical Device Reprocessing

WATERBORNE PATHOGENS: WHY IS THEIR PROFILE CHANGING?

CAN WE HALVE GRAM-NEGATIVE BLOODSTREAM INFECTIONS? A DEBATE

Speaker: Prof. Jon Otter, Imperial College Healthcare NHS Trust, and Martin

CLEAN HOSPITALS: THE NEXT FRONTIER IN INFECTION PREVENTION

University

Ottawa

October 15, 2020

October 20, 2020

(FREE Teleclass)

(European Teleclass)

Kiernan, University of West London

(FREE ... WHO Teleclass - Americas)

Thanks to Teleclass Education PATRON SPONSORS

